PHYSICAL REVIEW E

VOLUME 52, NUMBER 6

DECEMBER 1995

Growth instabilities in mechanical breakdown under mechanical and thermal stresses

S.-Z. Zhang* and E. Louis
Departamento de Fisica Aplicada, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain

O. Pl and F. Guinea
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas, Facultad de Ciencias C-III,
Universidad Auténoma de Madrid, E-28049 Madrid, Spain
(Received 22 May 1995)

A linear stability analysis is used to investigate crack growth in two dimensional elastic media,
and under mechanical or thermal stresses. Although in most cases a circular geometry is considered,
the instability of a planar crack is also discussed. Several boundary conditions and size effects are
considered. The results indicate that the tendency towards instabilities in mechanical breakdown
is stronger than in the case of growth in fields governed by the Laplace equation (diffusion or
electrostatic fields), in line with the smaller fractal dimensions obtained in the first case. Instabilities

under thermal stresses are shown to depend on the actual thermal gradients.

Finally, a model

previously investigated numerically is used to show that plasticity decreases the strength of the

instability.

PACS number(s): 68.70.4+w, 05.40.+j, 61.50.Cj

I. INTRODUCTION

Linear stability analysis has been widely used to il-
lustrate the possibility of instabilities in a large variety
of growth problems [1-7]. In particular these instabili-
ties are respomnsible for the first stages of the formation
of the complex structures found in diffusion limited ag-
gregation (DLA) [6] and dielectric breakdown (DB) [8]
models. Recently the more complex growth problem of
mechanical breakdown [9-12] has also been considered
from this point of view in [13-15], and more recently by
two of the present authors [16]. In [13] it was proved that
a flat crack subjected to tangential forces is unstable to
small perturbation, whereas in [16] a circular crack grow-
ing in a circular sample was shown to be unstable under
the stress fields induced by either constant strain or con-
stant pressure applied at the sample crack surface. In
both cases the instability was found to be stronger than
in the case of patterns growing in Laplacian fields. The
results of Ref. [16] are at variance with those of [14,15]
due to omission in the latter works of important terms
related to the tensorial nature of the stress field.

In this work we discuss in detail the calculations pre-
sented in our previous publication [16], and extend the
analysis to several cases of interest, some of which have
already been investigated numerically. The paper starts
with a brief discussion of the main features of the me-
chanical breakdown model. Then, the case of a flat crack
[13] is analyzed in detail. The instability of a circular
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crack growing under a variety of boundary conditions
is investigated in Sec. IV. Size effects are discussed in
two important cases. It is also shown that including
a finite threshold stress in the growth law, as done in
Refs. [14,15], does not change the response to small per-
turbations of the circular crack. Instabilities under ther-
mal stresses are discussed in Sec. V. In this case the in-
stability is shown to depend strongly on the local thermal
gradients. Finally, the effects of plasticity are discussed in
Sec. VI. It is shown that plasticity decreases the strength
of the instability, in line with numerical simulations [17].

II. MECHANICAL BREAKDOWN

This growth model, which exhibits a variety of regimes,
describes the growth of cracks in an elastic medium [18].
The strain field, u(r), in an isotropic elastic material of
Lamé coefficients A and u, satisfies the well-known equi-
librium equations [18]:

A+ p)V(V -u) + puVia=0, (1)

which is derived from a free-energy density:

2
F=Fy+\ (Zuii) +2M2u?ja (2)
i %)

where Fp is the equilibrium free energy and u;; =
%(Biuj + Oju;) is the strain tensor. The stress tensor
is defined as, 0;; = OF/0u;;.

Within a crack, there are no restoring forces. The force
normal to its boundary must vanish, N; = Ej o;n; =0,
where n is the vector normal to the boundary.

A simple rule for crack growth, closely related to DLA
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and dendritic growth, makes the local velocity of growth
at a point on the boundary dependent on the modulus of
tansverse stress T (force) at that point:

v = f(T). (3)

The model can be thought of as a kind of vectorial
counterpart of DLA. The role of the diffusive scalar field
in DLA is here played by the displacements, u. This
model has been studied extensively [9-12], and it resem-
bles DLA in a variety of features. Most notably, when
v, « T, fractal shapes develop. Setting v, o« T", and
n — oo, the fractal dimension of the cracks decreases.
Dendriticlike patterns can be generated by suppressing
the stochastic noise in the growth process [19].

In the following, we will see that, like in other growth
models, these structures are associated with linear insta-
bilities in the growth of simple shapes [1]. Cracks grow in
the presence of a stress field, induced by external condi-
tions, which can have a different origin. In the following
we shall consider some of them.

III. INSTABILITY OF A PLANAR CRACK

This case was discussed in detail in [13]. In that pa-
per the authors obtained the Airy stress function from
which they derived the stress tensor [18]. Here we shall
follow a completely equivalent analysis and give explicit
expressions for the displacement vector and for the stress
tensor. Let us consider a rectangular sample of length L
(along the y direction) subjected to a tension oo applied
at the two boundaries along the x direction (x = +W/2,
where W is the width of the sample). We assume the ori-
gin of coordinates to be at the center of the sample. The
displacement vector v, which fulfills Lamé’s equation and
the boundary conditions at the z and y boundaries (note
that no stresses should propagate through the boundaries
along the y direction) is given by

v(z,y) = o~ 5 (4)

where E and v are the Young’s modulus and Poisson’s
ratio in two dimensions, namely,

_4p(A4p) A

B A Ce )

(5)
We now follow the standard linear instability analysis
and investigate the stability of the flat crack (for instance,

the boundary at y = yo = —L/2) upon small perturba-
tions of wave number m such as

Yp = Yo + feimz, (6)

where € < yo. In applying the boundary conditions, we
note that the unit vectors normal (n) and tangent (t) to
the perturbed surface are given by (after linearizing in

€),

n = (—ieme’™*, 1), t = (1,ieme’™®). (7
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As in Ref. [13] we shall assume that L is very large.
Then, the displacement vector which fulfills Lamé’s equa-
tions and the boundary conditions is

g9 ,.

u(z,y) = v(z,y) + ﬁ(zm(y - %), [1 — m(y — vo)])

x e™liz—(y—o)] (8)

and the components of the stress tensor are

02z = Go{1 +m[2 — m(y — yo)jee™E=" W)}, (9a)

Oyy = gom?(y — ’yo)fem[iz_(y—yo)]a

(9b)

Osy = Oy = i0om[1l — m(y — yo)]ee™=~ W=l (g¢)
As stated above, we now assume that the growth rate

is proportional to the modulus of the tangential tension,

which in this case is given by (after linearizing in €),

T = 020 (Yp)(1,ieme’™?). (10)

Thus, the instantaneous growth rate can be approxi-
mated by

Yo + €™ = Coau(yp),

(11)

where C is a constant. Then the ratio between the in-
stantaneous rates of growth of the perturbation (é) and
that of the flat crack (yo) is given by

A = .6/6 =2m
Yo/ Yo

(12)

This is equivalent to the result reported in Ref. [13]
and is twice the one obtained in the case of growth in
Laplacian fields [5,6]. This stronger tendency towards
instabilities is confirmed in the cases with radial symme-
try discussed below.

IV. INSTABILITY OF A CIRCULAR CRACK
UNDER CONSTANT STRAIN OR PRESSURE

The free energy in polar coordinates (polar coordinates
and a polar reference frame will be hereafter used) is
given by :

F = Fo+ 3\(urr +uge)” + p(u, + ugo +2v3,)  (13)

from which the components of the stress tensor can be
derived

Opp = m(urr + V'll,og), (14&)

T00 = T3 (vtpr + ug9), (14b)
E

Oreg = murﬂa (14C)
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where E and v are the Young’s modulus and Poisson’s
ratio in two dimensions given in Eq. (5). It should be
noted here that in Ref. [16] the three-dimensional defini-
tion of Poisson’s ratio was used. The resulting equations
and formulas in [16] and those presented here, only differ
in some constant factors. The components of the strain
tensor are given by

, _ Ug + Uy 1 ;  Up — Ug
Upp = Up, Uge = ——T_’ Ugr = 5 u9+'r— )

(15)

where the partial derivatives with respect to r or 8 are
denoted by a prime or a dot, respectively. The equilib-
rium (or Lamé) equations [14] in polar coordinates are
given by

00, 180'01' Orr — 000

=0 6
ar Tr a0 T 1 ’ (16a)
O90g, = 100gg Oor
- 2706 - — 0. 16b
o Tra0 T2, =0 (16b)
We now consider a circular crack of radius r = R;

growing in an isotropic elastic medium at a rate deter-
mined by the boundary conditions to be defined below.
What we shall investigate is the stability of this circular
crack upon small perturbations of wave number m (m
being a positive integer), such as r, = R; + €™ where
€ < R;. Once the circular front is perturbed, the most
general solution of the Lamé equations can be written as
(14,16

up(r,0) = v,(r) + €U, (r)e'™®, (17a)

ug(r,0) = ieUp(r)e'™?, (17b)

where u(r,0) and v,(r) are the displacement fields in
the perturbed and unperturbed cases, respectively. The
functions U, (r) and Ug(r) are given by the following ex-
pressions:

Ur(r) = ar’™™ + br= 1™ f or™t L dr™~1 (18a)

Uo(r) = avar’™™ — br=17™ 4 cyor™+ 4 dr™ 1. (18b)

The constants v, and 7. in Egs. (9) are

_ 4—-m(1+v)
Yo = M+ ) +2(1—v)
(19)
e 4+m(l+v)

T mil+v)—2(1-0)
In writing Egs. (18) we have assumed that R,, the

[m(m+1) —2](1 +v)

a—(m+1)R% +

[m(m—1) —2](1+v)
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radius of the outer boundary, is not infinitely larger than
R;. In this case the positive powers are not unphysical.

Before imposing the boundary conditions at the crack
surface we have to write the unit vectors normal (n) and
tangential (t) to the crack surface, which, linearizing in
¢, take the form

iem im iem
n= (1, —E—C 9) , t= (—Eezmo, 1) . (20)

The fact that the normal to the surface has a 6 compo-
nent proportional to € was not taken into account in Refs.
[14,15]. It should be noted that in the case of Laplacian
fields this effect gives a second-order correction that can
be neglected. In the present case, and due to the ten-
sorial nature of the field, this correction is of first order
and has to be included.

A. Constant strain or pressure at an outer boundary

In both cases, the boundary conditions at the crack
surface accounts for the fact that no stresses propagate
normal to this surface [18], so that, the two components
of the force normal to the surface (N) have to be zero,

N, = 0ppnp + 0rgng = 0pr(rp) = 0, (21a)

iem
Ng = 09, + 0gong = 09, (R1) — E——e’maagg(Rl) =0.
1

(21b)

As regards the outer boundary (r = R;), two boundary
conditions are considered, namely, a constant strain (ug),
and a constant pressure (p). In the first case the resulting
equations are

v (R2) = uo, (22a)

U, (Rz) = Up(Ry) = 0. (22b)

Equations (21a) and (22a) give the displacements in
the unperturbed case

_ 2
'u,.(T) = Bes I:%TZT + %] s
(23)
ﬂcs = UO(l + V)

C(1-vR+ B+

On the other hand Eq. (22) combined with Egs. (21)
give the following set of equations for the constants in
Eqgs. (18),

R¥™c+ (m — 1)R2™2d = — 2Per

w—(2+m)(1+v)

- (2-m)(1+v)
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m(l —m)(1+v)

m(m + 1)(1 +v)

—2
-Ermtnt MR

a+ R;%b+ Ri™c+ RI™%d = 0, (24c)

Ya@ — R3%b + y.R¥™c + RZ™"2d = 0. (24d)

In the case of a constant pressure po at the outer
boundary, Egs. (22) are replaced by

orr(R2) = po, ore(R2) = 0. (25)

As a result the constant ., in Eq. (23) is replaced by

_ poR3(1+v)

SR i) .

and the set of equations that gives the four constants in
Eqgs. (18) has to be modified as follows. In the first two
we only need to replace 3., by B.p, whereas the third and
the fourth are obtained by replacing in Egs. (24a) and
(24b) R, by R, and the right-hand side by zero.

As in Refs. [9-11] we assume that the growth rate is
proportional to the modulus of the tangential tension
(T). This is easily calculated from the stress tensor cal-

culated at the crack surface (r = r,) and the tangential
vector given in Eq. (4). The result is

T = ogo(rp) (E—n—Leima, 1) . (27)
R,
Thus the instantaneous growth rate is given by
Rl + éeime = CUGG(Tp)a (28)

where C is a constant. Then the result for the ratio
between the instantaneous rates of growth of the pertur-
bation (€) and that of the circular crack (R;) in the case
of constant strain is

2R;n+1
ﬁca
m(m + 1)(1 +v)
x [4u —2—m)(1+v)

O =2(m—1) —

c+(m— 1)R;2d] . (29)

In the case of constant pressure (3., should be replaced
by Bcp, and the constants ¢ and d by those corresponding
to this boundary condition. If the outer boundary is
placed at the infinite, the result for a,, is

am = 2(m — 1) (30)

for the two boundary conditions here considered. This
result indicates that the circular crack is unstable to per-
turbations of wave number m greater than 1, as in the
case of Laplacian growth [6]. Note, however, that, as in
the case of a planar crack, a,, is twice that found in the
case of growth in fields governed by the Laplace equation

w—(2-m)(1+v)

R™c+ (m —1)RI™%d =

(DLA and DB) [5,6]. This result is in accordance with an
analysis of the field singularities along the lines of Ref.
[20]. In fact the singularities that appear at wedges in
an elastic medium [13,21] are stronger than those found
in Laplacian fields [20]. As a consequence the predicted
fractal dimensions for the elastic case [10], are smaller
than those obtained in Ref. [6] for Laplacian fields, in
agreement with numerical results.

We have studied the case of a finite R, by numerically
solving Eqgs. (24) for the constants a—d, and substituting
the results for ¢ and d in Eq. (29). The results for o,
are shown in Fig. 1. First some comments on the depen-
dence of the numerical results on the elastic constants
are in order. For constant pressure at the outer bound-
ary (first fundamental boundary value problem, see [22])
the numerical results do not depend on the elastic con-
stants. This result is in agreement with a general the-
orem of plane elasticity theory in an isotropic multiply
connected medium [22], which states that for given ex-
ternal stresses and provided that the resultant vectors of
the applied forces at the inner boundaries are zero, the
stress field does not depend on the elastic constants. In
the case of fixed displacements at the outer boundary
the results only show a slight dependence on the elas-
tic constants for small Ry/R;. At large Ry/R; this case
becomes equivalent to that of constant pressure at the
boundary (see above).

The following features of the results of Fig. 1 are worth

FIG. 1. Results for the ratio between the instantaneous
growth rates of the perturbation and that of the circular
crack (am,m = 2,4) as a function of Rz/R;, for v = 0.25
(A = p) and the two boundary conditions at the outer bound-
ary (r = R2) considered in this work, namely, constant strain
(continuous lines) and constant pressure (chain lines). At
Rz = R, the values of a,, for constant strain and pressure
are —4/3 and oo, respectively. The horizontal chain lines in-
dicate the values of a,, for the outer boundary at the infinite.
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of comment: (i) the results for constant strain are always
below the asymptotic value of Eq. (30), whereas the op-
posite holds for constant pressure, (ii) the asymptotic
value is reached faster as m increases, and, (iii) as R,
tends to R;, a,, increases up to oo, in the case of a con-
stant pressure, whereas for constant strain it decreases
to —4/3, in both cases these values are independent of
m. It is interesting to compare these results with those
obtained for Laplacian fields. In the latter case a,, is
given by [22,23]

(R2/Ry)*™ + 1

Qm _m(Rz/Rl)szFl , (31)
where =+ signs correspond to fix either the potential or its
derivative at the outer boundary (Dirichlet or von Neu-
mann boundary conditions). We note that this equation
shows a behavior similar to that found for «,,, in the case
of elasticity. For instance, for Ra/R; = 1 + €, where
€ K 1, ayy, tends to either 1/e — 1 (for all m) or m?e — 1,
for either constant potential or constant field. We also
note that the results for a,, obtained in the case of elas-
ticity (see Fig. 1), are always larger than the values given
by Eq. (31) but for R, very close to R; and fixed strain
at the outer boundary. (As an example, we note that
for m = 2 and m = 4 this occurs for R, < 1.05R; and
R; < 1.02R;, respectively.) Thus, only in a range of R,
of minor interest, the instabilities in Laplacian fields can
be stronger than in the case of elasticity.

B. A pressurized circular crack

We now consider a circular crack in an infinite medium,
with an applied pressure inside the crack, po. Being the
size of the medium infinite, the positive powers of r in the
functions U, (r) and Uy (r) are unphysical, and, therefore,
the constants ¢ and d have to be zero.

The boundary conditions at the crack surface (r,) are

N, =~ Urr(rp) = —Po; (32&)

No = 06, (R1) — 6™ 599 (Ry) = i o ei™Ppy, (32b)
R1 Rl

where we have assumed a hydrostatic pressure inside the

hole, and, therefore, perpendicular to the hole surface.

These conditions [Egs. (32)] give the following result for
the displacements in the unperturbed case

- =Po(1+V)R_¥

v (r) E 7‘ (33)

In the perturbed case the following set of equations for
the constants a and b in Egs. (18),
[m(m+1) —2](1+v)
w—-(2+m)(1+v)

2po(1 + v)
ER™™ ’

(34a)

a—(m+1)R %= —
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m(l —m)(1 +v) —2, _ 2pom(1+4v)
4u—(2+m)(1+u)a+(m+1)R1 b——ERi—’" .
(34b)

The result for the ratio between the instantaneous
rates of growth of the perturbation and that of the cir-
cular crack is

O, = 4(m —1). (35)
We note that the tendency towards instability is stronger
than in the other two cases discussed above, as could have
been easily anticipated.

C. Effects of including a threshold stress in the
growth law

If instead of the growth law assumed above, we suppose
that there exists a finite material-dependent strength
(T.) that has to be overcome for the crack to propagate,
the normal growth velocity will be given by [14,15]

v, =C(T - T.)", (36)
where, as above, the constant 1 will be taken equal to 1.
As in [14,15], we shall assume that the circular crack is
exactly at threshold, this means that the tangential force
at the surface of the circular crack is T, or equivalently
(in the unperturbed case)

0'99(R1) = Tc. (37)

This condition will fix uo or po in the cases of con-
stant strain or constant pressure at the outer boundary.
As under this requirement the velocity of growth of the
circular crack vanishes, a,, cannot be defined. Instead
we consider the time evolution of the perturbed surface,
namely,

rp = Ry + ee’mOtwt, (38)

In calculating the growth velocity of the perturbation
(w) we shall assume that the sample is much larger than
the crack so that the constants ¢ and d in Egs. (18) can
be neglected. Then, w is given by

T
Bw =2C(m—-1)=—" (39)

R,
for both constant strain or pressure at the outer bound-
ary. This result is at variance with the one reported in
Refs. [14,15]. The reason is, once again, the components
in the tangential and normal unit vectors proportional
to €, which were not accounted for in [14,15]. The result
is, on the other hand, equivalent to that obtained for the
growth law without a threshold, indicating that, from
the point of view of growth instabilities, the two models

show no differences. A similar conclusion is attained in
the case of a pressurized circular crack.



52 GROWTH INSTABILITIES IN MECHANICAL BREAKDOWN . ..

V. INSTABILITY OF A CIRCULAR CRACK
UNDER A THERMAL GRADIENT

In this case the free energy density is given by [18]

1
F = Fo(T) — a(© — O¢)(urr + uge) + A (e + ugp)®
+l"'(u$r + ugﬂ + ugr)? (40)

where ©g is a constant temperature, o is a parameter
that accounts for the coupling between the elastic and the
thermal (©) fields. From this free energy the equations
of motion can be derived easily.

We shall consider the case of a circular crack of radius
R; growing in a circular sample, assumed to be much
larger than the crack, under the stresses induced by a
temperature that varies as a power n of the radial vari-
able r

®@=0;+hr™ for n<O0, (41)

where ©; is a constant temperature. Note that for n = 0
no stresses are present in the sample. As in previous
cases, the force normal to the crack surface has to be
zero. This gives the displacements in the unperturbed
case

_a ah(l +v) 1+n_§_§2
v(r) = 5(91 Oo)r + 32+ 1) (r "

for n # —2, (42a)

ah(1l+v) n "

for n = —2.
2r R "

%(@1 — @o)r + (42b)
In considering the perturbed case we note that as we
have assumed that the sample diameter is much larger
than the crack diameter, the constants ¢ and d in Egs.
(18) can be neglected. The requirement of no forces prop-
agating normal to the crack surface gives the following
set of equations for the constants a and b in Egs. (18),

[m(m +1) - 2](1 +v) _a, _ ah(1+v)
w-@rmir ¢ DR = pe
(43a)
m(1 —m)(1+v) 2y, ch(l+v)m
w-@rmarntmt 1)R;%b = 2R
(43b)

The result for the ratio between the instantaneous
rates of growth of the perturbation and that of the cir-
cular crack is

o =2(m—1)+n for n<O0. (44)

This result is rather simple and can be easily under-
stood: the instabilities depend on the thermal gradient.
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On the other hand, the tendency towards instabilities is
weaker than for constant strain or constant pressure at
the outer boundary (this result may change when a dif-
ferent temperature field is considered).

VI. ELASTIC TO PLASTIC TRANSITION

In this section we discuss the effects of plasticity by
means of a model previously used to investigate numeri-
cally the effects of plasticity on the fractal dimension of
growing cracks [17]. In that model the propagation of a
crack in a triangular lattice of classical springs was in-
vestigated, assuming that when a bond was broken it be-
came a link between the two lattice nodes which sustains
a constant stress (independent of strain) proportional to
the stress of the bond at the time of breaking. This be-
havior is illustrated in Fig. 2, and represents what is
known as a perfect elastoplastic medium in the case of a
proportionality constant equal to one. It is clear that this
model instead of describing crack propagation, concerns
a kind of elastic to plastic transition, although it recov-
ers the case of fracture when the proportionality constant
vanishes.

Let us consider a disc of radius R» subjected to a con-
stant strain at its boundary. Under this condition the
radial component of the displacement vector (the only
nonzero component) is

_ r
ve(r) = uOE. (45)

According to the model described above, we now as-
sume that the material inside a circle of radius R; < Ry
undergoes an elastic to plastic transition. The plastic
material will sustain a stress, which we will assume to be
independent of the strain (see Fig. 2), so that it will no
longer propagate stresses. As in [17] we take

plastic __ OF Uo

a.plastic — — -0 g =0 46
rr 66 (1 _ I/) R2 ’ 6 ( )
g 4
g p-------——~+ ]
1
1
80, |-------A- —_—
i
1
|
1
1
1
i
u u

c

FIG. 2. Stress (o) vs strain (u) in the model used in this
work to investigate the effects of plasticity. When § = 1 the
model is that corresponding to a perfect elastoplastic solid.
u. gives the maximum deformation before plastic behavior
occurs.
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where 0 is a parameter which, as in Ref. [17], is assumed
to be less than 1 (Fig. 2).

The displacements in the elastic medium can now be
obtained from the two boundary conditions. The first
fixes the displacement at the outer boundary

Ur (R2) = Uo, (47)
whereas the second accomplishes for the requirement of
continuity of the normal forces at the boundary between
the two media. These boundary conditions give

JE Ug
rr = T \Np 48
7rr(Br) = =0 (48)
from which the displacements in the elastic medium can
be obtained easily:

- 2 2
'U,.(’l") = ,Bcs I:(%TZ‘ + 6%) T+ (1 - 6)5;];:] ) (49)

where (., is the constant given above. This expression
reduces to the one found in the case of a circular crack
for 6 = 0.

Assuming that R,/ R; is large enough so that c and d in
Eq. (18) can be replaced by zero, an analytic expression
for the ratio between the instantaneous rates of growth
of the perturbation and that of the circular crack can be
obtained. The result is

2(1-6)(1 - v)RZ
S1+v)R2+(2-96)(1—v)RE’

0y =2(m —1) (50)

In the case of constant pressure at the outer boundary,
the displacements in the presence of a circular crack are
given by

—v 2 2
vn(r) = Bep [%;—,, (1 - 52—%) rt(1- 5)%] . (51)

where (., is given above. This expression reduces to the
one found in the case of a circular crack for § = 0.

The result for the ratio between the instantaneous
rates of growth of the perturbation and that of the cir-
cular crack is

— §)R2
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We first note that the explicit dependence of a,,, on the
elastic constants found for the case of fixed displacements
at the outer boundary [Eq. (50)] is a consequence of the
boundary condition at the inner boundary [Eq. (48)]. In
discussing the behavior of Egs. (50) and (52) two lim-
its are worthy of comment. If § = 0 we recover results
obtained for standard crack propagation in a circular ge-
ometry. Instead if § = 1, a = 0 for all m and the growing
pattern should be Eden-like, as expected and found in the
numerical simulations of [17]. In the latter case (a perfect
elastoplastic medium) our results show that the plastic
zone should grow compact, as is likely the case in actual
systems, but with a rough surface. For intermediate val-
ues of §, Eq. (52) indicates that a smooth transition from
DLA-like to Eden-like is expected to occur, in agreement
with [17]. Of course plasticity is a rather complicated
phenomenum characterized by the generation of a vari-
ety of lattice defects, and is not expected to be described
by the simple model discussed here. The present results
should be taken as another example of pattern formation.

VII. CONCLUDING REMARKS

In this paper we have presented a study of growth
instabilities in mechanical breakdown under mechanical
or thermal stresses. For those boundary conditions for
which numerical simulations are available we have shown
that the instabilities are stronger than for patterns grow-
ing in Laplacian fields (DLA or dielectric breakdown), in
line with the smaller fractal dimensions obtained in sim-
ulations of mechanical breakdown. We have also shown
that thermal stresses induce instabilities whose strength
strongly depends on the local thermal gradients. We have
finally discussed the instabilities in a model previously
used to investigate numerically the effects of plasticity.
Our results are in complete agreement with the conclu-
sions drawn from the numerical simulations.
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